contoh soal identitas trigonometri sudut rangkap
1.
1.Jika cos 2x = 1/2 dan x ialah sudut lancip maka tan x = ....
A. 1/2
B. 1/2 √2
C. 1/2 √3
D. 1/3
E. 1/3 √2
jawaban :
Hitung terpenting dahulu sin x
cos 2x = 1 - 2 sin2 x
2 sin2 x = 1 - cos 2x = 1 - 1/2 = 1/2
sin2 x = 1/4
sin x = 1/2
sin x = depan / miring = 1/2
tan x = samping / miring
samping = √(22 - 12) = √3
Makara tan x = √3/2 = 1/2 √3
Jawaban: C
2.
Contoh Soal Pemakaian Sudut Rangkap Sinus.
Jika sinα = 3/5 dan adalah sudut lancip, tentukan nilai sin2α:
jawaban :
sinα = 3/5
cosα = 4/5
Sehingga,
sin 2α = 2. sinα cosα
sin 2α = 2 . 3/5 . 4/5
dosa 2α = 6/25
3.
Jika sin x = 4/5 dan x ialah sudut lancip, maka sin 2x = ....
A. 2/5
B. 3/5
C. 12/25
D. 24/25
E. 33/25
jawaban :
Hitung terpenting dahulu cos x
sin x = 4/5 maka cos x = 3/5 (ini didapat dari triple 3, 4, 5)
Maka,
sin 2x = 2 sin x . cos x = 2 . 4/5 . 3/5 = 24/25
Jawaban: D
4.
Jika sin x = 1/2 maka cos 2x = ....
A. - 2
B. - 1/2
C. 1/2
D. 1
E. 2
jawaban:
Untuk memilih cos 2x pergunakanlah rumus yang kedua yaitu:
cos 2x = 1 - 2 sin2 x = 1 - 2 (1/2)2 = 1 - 2 . 1/4 = 1/2
Jawaban: C
5.
Soal Identitas Trigonometri
Jika tan 5°= p. Tentukan!
tan 50°
jawaban:
tan 50° = tan (45° + 5°)
= tan 45° + tan 5°/1 – tan 45° x tan 5°
= 1 + p/1 – p
Maka, hasilnya adalah = 1 + p/1 – p
6.
Diketahuiui sin x = 1/4, tentukan nilai dari cos 2x.
jawaban:
Rumus sudut rangkap untuk cosinus.
cos 2x = cos2 x − sin2x
cos 2x = 2 cos2 x − 1
cos 2x = 1 − 2 sin2 x
Gunakan rumus ketiga
cos 2x = 1 − 2 sin2 x
= 1 − 2 (1/4)2
= 1 − 2/16 = 16/16 − 2/16 = 14 / 16 = 7 / 8
Komentar
Posting Komentar